TABLE A: Recommended Air Change Rates

Type of building	Air Changes per hour	Type of building	Air Changes per hour			
Assembly hall	6-12	Factories (heavy)	10-30			
Auditorium	4-12	Laundry	12-30			
Bakeries	12-20	Paper Mill	8-30			
Boiler room	15-60	Textile mill	4-12			
Brewery	8-30	Packing room	8-30			
Class room	10-15	Transformer room	12-30			
Engine room	12-30	Paint shops	10-30			
Factories (light)	6-12	Warehouse	4-6			

TABLE B: PERFORMANCE DATA

WIND VELOCITY (MPH)		5			8			10			
TEMP DIFF°C		3	5	10	3	5	10	3	5	10	
MODEL NO.	THROAT SIZE (IN)	STACK (HEIGHT FT)	EXHAUST CAPACITY IN CFM								
AV : 200	8	10 20 30 40	329 343 352 361	340 356 368 378	358 378 394 406	531 534 552 560	542 556 568 578	560 578 594 608	674 524 694 702	684 598 710 720	700 720 736 750
AV : 300	12	10 20 30 40	519 546 566 580	542 574 600 620	580 620 656 686	817 844 864 877	840 872 898 918	978 918 954 984	1027 1056 1076 1090	1050 1084 1110 1130	1088 1130 1166 1196
AV : 350	14	10 20 30 40	623 654 681 702	652 692 728 756	700 756 806 846	973 1004 1031 1052	1002 1042 1078 1106	1050 1106 1156 1196	1222 1252 1277 1300	1250 1290 1324 1354	1296 1354 1402 1444
AV : 500	20	10 20 30 40	939 1005 1058 1107	1000 1084 1154 1216	1102 1216 1314 1398	1436 1503 1556 1605	1498 1582 1652 1714	1600 1714 1812 1896	1792 1859 1915 1961	1854 1938 2010 2070	1958 2070 2168 2252
AV : 600	24	10 20 30 40	1163 1257 1339 1407	1252 1372 1476 1564	1400 1564 1704 1826	1763 1857 1939 2007	1852 1972 2076 2164	2000 2164 2304 2426	2187 2282 2363 2428	2276 2396 2500 2586	2424 2586 2728 2850
AV : 760	30	10 20 30 40	1813 1966 2092 2194	1952 2144 2306 2440	2184 2440 2662 2850	2755 2908 3036 3136	2894 3086 3248 3382	3126 3382 3602 3792	3417 3572 3698 3796	3556 3748 3910 4042	3788 4042 4264 4452
AV : 1000	40	10 20 30 40	3547 3852 4101 4296	3818 4200 4520 4780	4270 4780 5218 5586	5388 5694 5945 6137	5660 6042 6364 6622	6114 6622 7062 7430	6677 6982 7230 7426	6948 7330 7650 7910	7400 7910 8350 8716

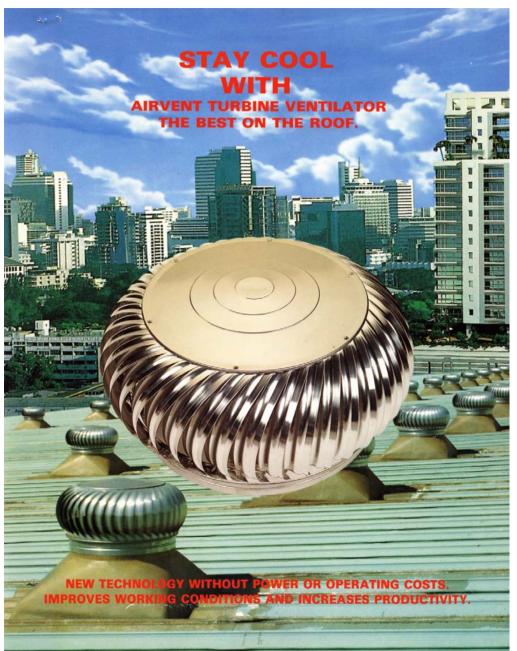
The data above to be used as a guide only

Deewan Equipment Tra

Tel.: +971 4 3333 840 Fax: +971 4 3333 845 Dubai - U.A.E.

حيوال لتجارة المعجات

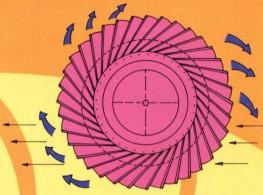
هاتف: ۹۷۱۳۳۳۸٤٠ + فاكس : ٥٤٥ ٣٣ ٣٣ ١٧٠ + دبي - ۱.ع.م.


Deewan Equipment Tra

Tel.: +971 4 3333 840 Fax: +971 4 3333 845 Dubai - U.A.E.

الله الله المعدات المعدات

هاتف: ۹۷۱۳۳۳۸٤٠+ فاكس: ٥٤٥ ٣٣ ٣٣ ٩٧١ + دبي - ١٠ع٠م٠



ATURAL ECONO-MICAL EFFECTIVE VENTILATION ALL YEAR ROUND WITHOUT POWER OR OPERATING COSTS. IMPROVES WORKING CONDITIONS AND INCREASES PRO-DUCTIVITY. AN ENERGY SAVER FOR A BETTER TOMORROW.

HOW DOES IT WORK.

he turbine ventilator operates by utilising the velocity energy of the wind to induce air flow by centrifugal action. The centrifugal force caused by the spinning vanes creates a region of low pressure area which draws air out through the turbine. Air drawn out by the turbine is continuously replaced by fresh air from the outside. The slightest

breeze will cause the turbine to spin and even after the breeze has stopped, the fly wheel effect of the rotor cage will use its stored energy to continuously remove air giving rise to ventilation. Suction is maintained even at low wind velocities.

FEATURES:

- Rigid roll formed curved vanes
- Weatherproof and stormproof
- Rotor shaft and bearing assembly concealed in aluminium or stainless steel casing. Easily field replaced
- Virtually maintenance free
- Light weight and durable
- 10 years warranty
- Available in aluminium and stainless steel

THE BENEFITS OF A NATURAL VENTILATION SYSTEM

actories, warehouses, workshops and even community buildings are frequently constructed without an efficient natural ventitation system for the benefit of occupants.

And, if the interior of the building gets hot and stale, there's always doors or windows that can be opened to provide for the ventilation.

However, stale and hot air doesn't disperse by itself and opening doors or windows is simply not sufficient to provide adequate ventilation in most buildings.

But, by installing AIRVENT Turbine Ventilators, you can provide an efficient and cost effective system of natural ventilation for the benefit of the building's occupants.

These wind driven Ventilators, unlike doors or windows, draw air upwards, creating a convection current, and in the process they extract stale air, together with air

which has become hot due to the building's exposure to long hours of sunlight and from manufacturing processes within the building.

As the stale and hot air is extracted by the ventilators, it is replaced by fresh air at ambient temperature entering through doorways and openings thus completing the convection cycle current and improving the internal environment.

Needless to say, fresh air makes people feel more energetic whilst stale air causes people to feel tired and on hot days the air movement over the body causes evaporation to occur which is the natural way of cooling down and reducing heat stress on the body.

Airvent Turbine Ventilator also help to prevent condensation by extracting moist condensate forming air, and in the case of fire will extract smoke and fumes thus preventing the building from becoming smoke filled and allowing the occupants to escape to safety.

SELECTION PROCEDURE

- Determine volume of space to be ventilated Volume (ft³) = L×W×H Where L = Length, W = Width, H = Height of building
- 2) Select Air Change Rate from Table A
- 3) Calculate required ventilation rate Q (cfm)

Q (cfm) =
$$\frac{\text{Volume (ft}^3)}{60}$$
 × Air change Rate

4) Determine number of ventilators = $\frac{\text{Ventilation Hate Q}}{\text{Exhaust Capacity}}$

Example

Building dimensions with L = 100 ft, W = 60 ft, H = 20 ft Volume (ft 3) = 120000 ft 3

Air change Rate selected = 12 per hour

Ventilation rate Q =
$$\frac{120000 \times 12}{60}$$
 = 24000 CFM

Refer Table B, Select suitable Model from table is AV-600 Exhaust capacity = 1972 CFM Under wind velocity of 8 mph, temp diff of 5 degrees, stack height = 20 ft Selection is 12 Nos. of AV-600

